Sine transform based preconditioners for symmetric Toeplitz systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sine transform based preconditioners for elliptic problems

We consider applying the preconditioned conjugate gradient (PCG) method to solve linear systems Ax = b where the matrix A comes from the discretization of second-order elliptic operators. Let (L +)) ?1 (L t +) denote the block Cholesky factorization of A with lower block triangular matrix L and diagonal block matrix. We propose a preconditioner M = (^ L +)) ?1 (^ L t +) with block diagonal matr...

متن کامل

Inverse Toeplitz preconditioners for Hermitian Toeplitz systems

In this paper we consider solving Hermitian Toeplitz systems Tnx= b by using the preconditioned conjugate gradient (PCG) method. Here the Toeplitz matrices Tn are assumed to be generated by a non-negative continuous 2 -periodic function f, i.e. Tn =Tn[f]. It was proved in (Linear Algebra Appl. 1993; 190:181) that if f is positive then the spectrum of Tn[1=f]Tn[f] is clustered around 1. We prove...

متن کامل

Solution of Toeplitz Normal Equations by Sine Transform Based Preconditioning

The normal equations constructed by a Toeplitz matrix are studied, in order to nd a suitable preconditioner related to the discrete sine transform. New results are given about the structure of the product of two Toeplitz matrices, which allow the CGN method to achieve a superlinear rate of convergence. This preconditioner outperforms the circulant one for the iterative solution of Toeplitz leas...

متن کامل

Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems

We consider the solutions of Hermitian Toeplitz systems where the Toeplitz matrices are generated by nonnegative functions f. The preconditioned conjugate gradient method with well-known circulant preconditioners fails in the case when f has zeros. In this paper, we employ Toeplitz matrices of xed band-width as preconditioners. Their generating functions g are trigonometric poly-nomials of xed ...

متن کامل

Circulant Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive deenite Toeplitz systems Ax = b by the preconditioned conjugate gradient method for three families of circulant preconditioners C. The convergence rates of these iterative methods depend on the spectrum of C ?1 A. For a Toeplitz matrix A with entries which are Fourier coeecients of a positive function f in the Wiener class, we establish the invertibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1996

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)00049-2